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Altltnd-In this paper. we study the thennodYll8lllics of a class of nonlinear dissipative maaerials
frequently called MaxweUian materials. UIi... the Clausius-Dubem inequality. we establish the restrictions
on the constitutive equations and show that in non-equilibrium situations the slress behaves in a manner
similar to an intemal state variable. We further show that the slress relaxation function for the maaeriaI
must satisfy a dissipation inequality. and that. if aD equilibrium states of the material are asYlllJltOlically
stable. the stress relaxation function is an odd function of the overslress (f - V-. where u· is the
equilibrium slress. In addition. we consider the instantaneous and equilibrium responses of the material and
prove that in these situations both the stress and the temperatUre are deriveable from the internal energy
function. Finally. we consider briely an -example of a specific consititutive model and close with a
discussion of an alternative formulation of the aeneraJ theory in whicb the roles of stress and temperature
are intercJtanaed.

I. INTRODUCTION

The constitutive assumption

(1.1)

has been used extensively to study one-dimensional wave propaption in non-linear dissipative
materials such as viscoplastic and viscoelastic materials.t Materials characterized by (1.0 are
frequently called MaxweUian* where tT is the stress. f is the strain. E is the instantaneous
stress-strain modulus and Gis the stress relaxation function.

Although this material model has found wiele use. we are unaware of any thermodynamical
formulation which encompasses (1.1). Our aim in this paper is to develop such a formulation for
nonconductors of heat within the mathematical framework of thermodynamics proposed by. ~

Coleman and Noll [5]. Crucial to the successful development of our theory is the appropriate
selection of the set of material response functions. Relation (lJ) is merely a special case of the
more seneral system of constitutive equations that we wish to study.

Our choice of response functions has been stronaIy influenced by the result in classical
thermodynamics that there exists conjugate pairs of thermomechanical variables. i.e. stress and
strain or temperature and entropy. For example, suppose tbat we postulate a response function
for the internal energy. Then, in the classical theory, we see that such a function can only
depend on the strain and entropy. Furthermore, two conjugate pairs of variables must exist in
that stress is derivable from the internal energy by taking the partial derivative of the enersy
with respect to the strain, and the temperature is obtained when the partial with respect to the
entropy is eValuated. In general. regardless of the thermodynamic potential used in the classical
theory, it is never a function of both variables in a conjugate pair but rather only one from each
of the pairs. Thus the stress and strain connot appear tosether in the list of independent
variables appearing in such a thermodynamic potential function.

There is a great volume of sound physical observation causing us to adhere to these
concepts and we do not wish to violate tradition; however. such reasoning applies only to the
realm of equilibrium states covered by the classical theory. Under dynamical situations we feel
free to set aside these precepts and permit both members of each conjugate pair to appear in
the intern&1 energy function. This point of view certainly appears to be consistent with the
functional dependence stated in (1.1) where both stress and strain appear as independent
variables.

tFor example. see the text by CriSteICU[l] and the review articles by Herrmann(2] and Nunziato" al.(3].
*Constitutive equations of the type (1.1) were tint introduced by Maxwell (4] in a discussion of the kilIetic theory of

pses.
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Thus, in this paper, we will consider constitutive equations in which the internal energy, the
stress rate, and the temperature rate are functions of strain, entropy, stress, and temperature as
well as the strain rate and entropy rate. Furthermore, in keeping with (1.1), we require that the
stress-rate and temperature-rate relations be linear in the strain rate and the entropy rate. While
strain, entropy, stress, and temperature all appear as independent variables in the internal
energy, the role of the stress and temperature is distinct from that of the strain and entropy. In
a sense, the strain and entropy serve to characterize the equilibrium states of the material, as
would be expected from the classical theory; while the stress and temperature act as internal or
hidden variables, governed by evolutionary equations, which describe departures from equili­
brium. This interpretation of stress and temperature as internal state vanables permits us to
develop the present theory along the lines proposed previously by Coleman and Gurtin[6] and
Bowen [7] in studies of materials with internal state variables.

In Section 2, we record our constitutive assumption for nonconductors and the governing
field equations. In Section 3, we examine the restrictions imposed on the constitutive equations
by the Clausius-Duhem inequality. These results show that three independent response
functions must be prescribed which give the internal energy, the temperature, and the stress
relaxation of the material solely as functions of strain, entropy, and stress. The stress-rate
relation is shown to be similar in form to (1.1) where the moduli are determined by the
prescribed internal energy and temperature response functions, and the stress relaxation
function is restricted by a dissipation inequality. The existence of a response function for the
temperature eliminates the need for the temperature-rate relation.

The concept of equilibrium and the stability of equilibrium states is treated in Section 4.
Here we show that the variables strain and entropy are sufficient to characterize the .equilibrium
states in a manner consistent with classical thermodynamics; and that at equilibrium, stress and
temperature are derivable from the internal energy. Furthermore, we find that the internal
energy is a minimum at all equilibrium states .which are asymptotically stable. In Section 5 we
make use of our equilibrium results to establish further restrictions on the stress relaxation
function. In particular, if all equilibrium states are asymptotically stable, then the stress
relaxation function must be an odd function of the overstress u - u·, where u· is the
equilibrium value of the stress.

The instantaneous response of the material is covered in Section 6, and assuming that this
response is elastic, we find that the stress and temperature are again deriveable from the
internal energy function. In Section 7, we illustrate how the results of the theory can be used to
construct a specific consitutive model.

Finally, in Section 8 we discuss an alternative formulation of the theory in which the roles
of stress and temperature are interchanged so that the temperature is now governed by a rate
relation. In this case the internal energy, the stress, and the temperature relaxation of the
material are functions only of strain, entropy, and temperature. This formulation is shown to be
entirely equivalent to the original formulation. .

2. EQUATIONS O~ MOTION AND MATERIAL RESPONSE

In this paper, we are interested in one-dimensional motions of a class of nonlinear,
dissipative materials. Thus, it is convenient to identify the body in its reference confiluration
with an interval ~ of the real line 9t =(-co, CXl) and identify each material point with its position
X in ~. In its reference configuration, the body is assumed to be homogeneous and have a
density denoted by Po- The motion of the body ~ is described by the continuous function X
such that

x =x(X, t) (2.1)

gives the spatial position x at time t E 9t of the particle which occupied the position X in the
reference configuration. The displacement u of the material point X is defined by

u=x(X,t)-X. (2.2)

Assuming that the motion X is of class C3
, we can also define the strain (or displacement
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gradient) f by

faux· (2.3)

Hereafter, we shall call the pair (c, 11) an admissible strain-entropy pair if both the strain f and
the entropy 11 are of class C2 for all (X, t) in ~ x 92.

We now wish to consider constitutive equations which will characterize the ther­
momechanical response of dissipative materials of the type (1.1). In formulating these constitu­
tive equations, we have kept in mind our introductory remarks on conjupte variables and
included both mechanical and thermal relaxation effects. Consequently, we consider materials
which do not conduct heat and are described by the constitutive equationst

e =e(f, 11, (T, 8, i, "';),

u=E(E, 11, (T, 8)i + PeE, 11, (T, 8)"'; +G(c, 11, (T, 8), .

; = A(E, 11, (T, 8)€ +B(E, 11, (T, 8)"'; + teE, 11, (T, 8),

(2.4)

(2.5)

(2.6)

where e is the internal energy per unit volume. The functions Eo P, A, and , are called the
msttJntolJtOus stress-strain modulus, the mstolltQlltOUS stress-entropy modllhu, the iIIIltUI­
tQlltOUS temperature-stram modulus, and the iIIItOllltUltOus temperature-entropy moduIMs,
respectively. lbrouabout this paper, we assume that for all (c, 11, (T, 8)

(2.7)

The functions Gand t appearina in (2.5) and (2.6) are called the stress rtIaDtioll/lUlCtioll and
the tempnatllre rtltuatioll/Illletion, respectively.

In order for this constitutive assumption to be physically meaniDaful, we need to ensure that
the evolutionary equations (2.5) and (2.6) for the stress (T and temperature I always have a
solution. Therefore, we shall further require that for every admissible pair (c,,,) on.x. and
initial values u(X, 0) c 0'0. 8(X, 0) "" 80. the dilerential equations (2.5) and (2.6) have cJau C·
solutions on • x" Materials of the type (2.4)-(2.6) will be refened 10 '81 ".,.uud
MlUwdUa materials.

In the present context, a thermodynamic process is the ordered array {II, 'I, (T, I, e} such that
eis of class ('2; Eo P, A, and Bare of class C·; and the balance laws

Poi =O'x +b,

e=ft+r,

(2.8)

(2.9)

along with (2.5) and (2.6), are satisfied on Le x 92 for appropriate values of the body force b and
heat supply r. For a given process to be admissible it must also satisfy the Clausius-Dubem
inequality

(2.10)

3. CONSEQUENCES OF THE CLAUSIUs-DUHEM INEQUALITY

Here we require that every thermodynamic process in a aeneraJized Maxwellian material be
an admissible process and consequently, the dissipation inequality (2.10) lel'Yes to impose
restrictions on the form of the constitutive equations (2.4)-(2.6). These restrictions are contained
in:

Theorem 1
Every thermodynamic process in tJ generalized Maxwellian mtJttrial so~ tltt ClaIls;"s-

tTbese constitutive equations are consistent with the ccmcept of equipmence: see T..... and Toupiall).

55. VOL. 14 NO. 7-8
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Duhem inequality (2.10) if and only if

(i) eis independent of E and 1j; Le.

e =e(E, 11, u, 8),

(ii) e, E, P, A, and Bare related by

(e,,) +(e,,)/: +(e,)B - 8 =0,

(iii) e, 0, and Cobey the inequality

(e,,)O + (e,)C sO.

(3.1 )

(3.2)

(3.3)

(3.4)

Proof
The proof of this result foUows a now standard argument (see Coleman and NoU[5]). By the

smoot1mess of the internal eneI'IY response function e, (2.4), (2.5), (2.6), and the enel'lY
equation (2.9) imply tbat

+(t.). + (i,;)1j = r.

This form of the eBerIY equation combines with (2.10) to yield the inequality

(3.5)

{(e.) +(2,,)£ +(;.)..4 - u}. +{(e,.) +(2,,)/: +(e,):8 - 8}"'; +(2,,)0 +(e,)C

+(1,,)1+(e,.hi sO. (3.6)

C~ly, for any point in Lt x 9t there exists an infinite set of thermodynamic processes
correspondina to an admissible pair (E, 'l). For such processes the values of t, ...;, i, and 1j can
vary _penclendy of any of the other quantities in the inequality (3.6). Consequendy, the
coefficients, of ;, ...;, i, and 1j must vanish and (iHiii) of Theorem 1 foUow direcdy. The
sufficiency of (iHili) is obvious from (3.6).

It should be noted that with the results of Theorem 1, (3.5) reduces to a more convenient
form of the enerlY equation, Le.

81j +(e,,)O +(e,)C =r. (3.7)

The results (3.1H3.3) have an important implication. In particular, they assert tbat there
exists a class C· function / such tbatt

Thus, by the chain-rule,

/(E, 'l, u, 8) =(e.) + (e,,)E +(e,)A - u

=(4) + (i,,)F +(ti)B - 8 =O.

<1.); +<1.,)';' +<1,,)0' +<1,)8 = o.

(3.8)

(3.9)

Either (2.5) or (2.6) can be substituted into (3.9) 'and the complimentary relation (for either 8 or

tWe require tbat the solutions of (3.2) and (3.3) lie on the same bypersurface. If this were not true. (3.2) and (3.3) could
be solved for IT aad , in lermS of f and 1J. Hence. the theory woukl dqenerate to a dependence of the response functions
on f and" alone. The ma&eriaI response would be elastic in this case.
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0-) can be obtained provided f has the following properties:

<1..)"Ii 0, <1,) "Ii 0,

<1,,) +<1..rE +<I,)A =0,

<1.,) +<1..)/:+<I,)S =0,

<1..)(; +<I,)t ... o.

With <1,) ¢ 0 everywhere, (3.8) implies that there exists a function i such that

(J ... iCE, '1, tTl

(3.10)

(3.11)

(3.12)

(3.13)

and this relation is equivalent to the differential form (2.6)t. In view of this equivalence, we can
reformulate the constitutive equations (2.4H2.6) and, in particular, we can prove:

TMomn 2
A ,tftII'liud Maxwellitm material can be characterized by the cOllltit"tif1t eqlUIIions

e =i(f,.", tTl,

, ... i(f,.", tTl,

subject to the dis,ipation ;"eqlUllity

(3.14)

(3.15)

(3.16)

(3.17)

FIIrthtrmort, the rtJPOIIU flllletioltS Sand Part IIOt arbitrary, b"t ale dDmrUIaed by I tIIId i
thro",h Ihe rUtiollS

t(E,.", tT)l",(f, '1, tT)'" tT- i.(E,.", tTl,

PeE, '1, tT)l",(f, '1, tT)'" i(f,,,, tT)- i"(f,.,,, tT),

Proof
To prove these results, we first note that since (3.15) exists, (3.1) becomes

e -I(c, .", tT, ') = I(E, .", tT, icc, .", tT»

=i(c, .",tT)

(3.18)

(3.19)

(3.20)

which is (3.14). Similarly, we can obtain the functions E, f:, and Gin (3.16). To ob&ain (3.17), we
note that by (3.20),

But, by (3.8) and (3.13),

.. 11) ~
~ =_YL!._
v.. <1,) (j'

(3.21)

(3.22)

tSillce /" is .....9 . ' .., dIere is III IlIenllItM for I Iinion ill wIIic:lI (2.J) is ...... by die fllllClian
f1' -I(.. If, '). 1'IIis fGI 'r • is .... fwdIer in Sec1ioa I. It ....... be ... dial lliDce baIII/, -/" are
DllII-VIlliIhiI (3.13) ..... dial if d or t vanilla, _ dIey VlIIIisb simalIIDeoutIy.
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Therefore, we see that, with G:; G,

(3.23)

and hence, (3.17) foDows directly from (3.4). Finally, to establish (3.18) and (3.19), we need to
compute the partial derivatives e. and e.,. By (3.20),

I. =e. + (i,)9., e." =i." + (i,)9."

where, by (3.8), (3.llH3.13), and (3.22),

9. = -~ = £ (~) +A,

9, = _!k2 1& p (C) + B.
el,) 6

(3.24)

(3.25)

(3.26)

Substitutina (3.2S) and (3.26) in (3.24) and usil1l the resultina expressions with (3.2), (3.3), and
(3.23), we can arrive at the desired results.

It is important to empIIuize that in formulatina thermod)'Dllllically consistent constitutive
equations for aeaera1ized Maxwellian materials, three response functions, I, 9and G, must be
specified. This is more than is usually req~ ill other dissipaUve theories, sucb as materials
with memory where only one fuaction need be specified, the internal eneraY (_ Coleman[9]),
and materials with internal state variables where two response functions are required, the
internal eaeqy and the vector rate equation for the internal variables[6, 7). Apia we remark that
the present theory bears a strikina similarity with the theory of materials with internal state
variables with the stress (T actina as the internal variable. ConsequeatIy, mucb of our
subsequent development of the theory of aeaera1ized Maxwellian materials will dnw heavily on
the ideas developed previously in studies of materials with internal variables (see Coleman and
Gurtin(6), and Bowen(7).

Finally, we observe that, by (3.23), the eDeI'IY equation (3.7) becomes

(3.27)

... EQUILIBRIUM STATES AND ASYMPTOTIC STABILITY

In dissipative materials, the notion of an equilibrium state is an e~tremely important one and
here we discuss the properties of sucb states in the context of the theory of aeneralized
MaxweDian materials.

In view of (3.16), we sball call a state (<<*, ,.,*, u*) an equilibrium state (see Greenberg[lO]) if

G(E*, 1J*. (T*) =o.

Clearly then, the dissipation inequality (3.17) asserts that at a material point X in a

8(/) =8(E, ,." (T) =i.r(E, ,." (T)G(E, 1J, 0')

is a maximum at equilibrium. Consequently,

and

(4.1)

(4.2)

(4.3)
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Using these conditions, it is a simple matter to show that

(i".)*(0.)*" 0,

(t".)*(0,,)*" 0,

(1...)*(0...)*" 0,

and

2(e..)*(0.)* +(i".)*(0.)* sO,

2(1.....)·(0,,)· + (i".)·(0",,)* sO,

2(e-)·(0...)* +(t".)·(0_)* SO,

(4.5)

(4.6)

(4.7)

(4.8)

where we bave used the notation ( )* to indicate that the function is evaluated at equilibrium.
The results (4.5H4.8) clearly live an indication of the restrictions the dissipation inequality
imposes on the response fUlldions 1 and 0 in the neiPborbood of. an equibDrium state.
However, even stronger results bold if the equilibrium state is stable in a certain sense.

Consider &pin an equilibrium state (e:*,,,*, 0'*) of the material at the point X E •. The
do1JUJ;1I of tluractioll for the constam straill-mtrapy pair (e:*, ,,*) of an equilibrium state is the
set g)* of all values 0'0 such that the solution 0''' O'(t) of the initial value problem

O'(to) .. 0'0.

exists for all time t ~ to. is unique, and

O'(t) ... O'* as t ... co.

(4.9)

(4.JO)

(4.11)

The equilibrium state (f·,,,*,O'·) is said to be lU1"'ptotically ,tlJble lor the COltSttmt straill­
entrapy pair (';., ".) if the set i). contains a neiabborbood of 0'*.

Now, it follows from (3.14), (3.J6), and the dutiIi-ruIe that at X there exists at least one
thermodynamicaDy admissible process correspondina to a constant stl'ain-entropy pair (f*, ".)
sucb that

Furthermore, by the dissipation inequality (3.17), e(t) s e(lo) for all I ~ 10. or. by (3.14) and
(4.J0),

I(f·, "., 0'0) ~ 1(,;*, ,,*,0'(1».

Since 0'0 is in g)*, (4.JJ) and the smoo~s of 1 implies that

lim I(f·, .,,*,0'(1» .. e(f*, ,,*,0'*),
1-

and consequently,

(4.12)

(4. J3)

This result, along with the definition of asymptotic stability, yields the foJlowina minimal
property of the internal enet'lY.t

tThis minimal properly llso arises in other dissipative tIleories. See CoIemaII(9J who CGIIIidered with fldina
memory and CDlemu and Gunin(6] who consider materill~ with intemaI state v.......



552 lACE W. NUNZIATO and DouGLAS S. DRUMHELLER

Theorem 3
At an equilibrium state which is asymptotically stable for the constant strain-entropy pair

(fl*, ,,*), the internal energy is a minimum; i.e.

(4.14)

for aLl values of the stress u in some neighborhood of u* .·Furthermore, at such an equiilibrium
state

and

e.,.(E*, ,,*, u*) =0, e.",.(E*,,,*, u*) 2: 0,

G..(E*,,,* ,u*) S o.

(4.15)

(4.16)

Clearly (4.15) is a consequeaee of (4.14) and (4.16) follows from (4.15) and (4.8).
From c1usical arpunents. we expect that at equilibrium staleS a unique relationship exists

which determines the stress u* in terms of the admissible pairs (E*, .,,*):

(4.17)

We can auarantee the existence of such a functional form by requiring the strict form of the
inequality (4.16), i.e.

to hold for aD equilibrium states. Clearly, by (3.14) and (3.15), we also bave

e* =e(f*, ,,*, 17*(.*, .,,*» =i*(E*, ,,*),
'* = i(,*, ,,*, 17*(.*, ,,*»=i*(,*, ,,*).

(4.18)

(4.19)

(4.20)

We call 17*, i* and i* the .iUbrium raponse functions for the material. Then. by the chain
rule,

~ =(i..t)* +(l..)*u~,

and usilll (3.18), (3.19) and (4.15), we have:

(4.21)

(4.22)

Theorem 4
If the equilibrium states of a generalized Maxwellian material are asymptotically stable and

(4.18) holds, then the equilibrium response of the material is elastic and cMroeteriztd by the
response function

where the stress u and the temperature (J are given by the thermodynamic relations

17* =I:, i* =I~.

(4.23)

(4.24)

. We conclude this section by establishilll one other result of interNt whicb bu a bearint on
the speed of propaption of weak disturbances in generalized Maxwellian materials.

Theorem 5
Consider a generalized Maxwellian material whose equilibrium states are asymptotically
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stable. Further suppose that for every equilibrium state (E*, 77*,0'*),

G...(E*, 77*,0'*) < 0,

G.(E*, 77*,0'*) > O.

553

(4.25)

(4.26)

Then. the instantaneous stress-strain modulus Eevaluated at the equilibrium state (E*, 77*,0'*)
is always greater than or equal to the equilibrium stress-strain modulus u~, Le.t

(4.27)

Proof
Differentiating (3.18) with respect to stress and with respect to strain yield the relations

-e. =e.,.E + e,..E..

Differentiating (4.21) and (4.24) with respect to strain implies

Evaluating (4.28) and (4.29) at equilibrium and using (4.30) and (4.15), we arrive at

(4.28)

(4.29)

(4.30)

and the upper bound of (4.27) follows from (4.15). The lower bound is a consequence of (4.25),
(4.26), and the relation

u*- _(0.)*
• (0...)*'

which follows from (4.1) and (4.17).
Notice that (4.27), along with our assumption that E never vanishes, is suflicient to

guarantee that the instantaneous stress-sttain modulus E is strictly positive for all (e. 1'f, 0'):

teE, 77,0') > O. (4.31)

5. FURTHER RESTRICTIONS ON THE STRESS RELAXATION FUNCTION

Having introduced the concept of equilibrium, we can now examine further the
consequences of the dissipation inequality (3.17). In particular, (3.17) imposes certain restric­
tions on the stress relaxation function aand, followins Malvern's suaestion[l2] that G be
represented as a function of the overstre,s 0' - u*(E, 77), we shall establish:t

Theortm 6
Consider a generalized MaxwtlIian material whose UuumtiUllOlls Slms-straill modIdMs

E(E, 1'f,0') is strictly positive. Further suppose that GIl eqldlibriltm statts of the material art·
asymptotically stable and that at these eqldlibrill1ll statts (f*, 77*,0'*)

e",,(f*, 77*,0'*) > 0,

O...(f*, 77*,0'*) < O. (S.1)

tWe IIOte that Gnenbeq(lO) required the strictform of the iIIequaIity (4.2'7)10bold illordertoprove dluxiIeeIIce oIltIIdy
waves in die context 01 die -.cballical theory (1.1). IIa'e we Me dial ID III••,. IIu its fCUldllioas in
thermodynamics. Colematl(ll) bu derived a IiIIIiIIr result for materiIls witb ...".

*Since Gis 'I functicm 01 (I, .. II. and the equiIibriam functicm r is a fuctioI OIIIy 01 ..... '" we can "ysexpress
the stress dependence of Gin terms of the ovemress (I - 6'*. 1bis represeaWion is lIIId quite frequendy illlIPPIicIdoas.
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Then, for every admissible strain-entropy pair (E,11), the stress relaxation function O(E.11, 0')
must be an odd function of the overstress 0' - U*(E,11) and satisfy

sgn O(E.11, 0') =- sgn [0' - 0'*(£.11 )].

Proof
Usina (3.18) and £>0, the dissipation inequality (3.17) asserts that

[0' - e.(E,11, O')]O(E, 11, 0') s 0

Now let us construct the two CI functions

aCE, ",0') = 0' - i.(E, ", 0').

PeE,,,. 0') =0' - U*(E.11).

(5.2)

(5.3)

(5.4)

(5.5)

It is clear from Theorem 4. that both a and fJ vanish at equilibrium and, in fact, as functions of
0', the functions a and p must always vanish simultaneously. Furthermore, for the constant
stJ'ain-entropy pair (t*, ,,*), (5.4) and (5.5) imply tbat at equiilibrium

ci,,(E*, ,,*,0'*) =1- '-(t*, ,,*,0'*),

p.,(t·, ,,*, 0'*) = 1.

But, by hypothesis. (4.28) and (5.1),

1-('-)* =(e-)*(.8)* > o.

Thus, as functions of 0', both a and Phave slopes of the same sian at equilibrium. This fact,
alona with the observation tbat a and Pmust always vanish simultaneously at equilibrium.
implies that for every admissible strain-entropy pair (E, ,,)

sgn [0' - i.(E.", 0')] =sgn [0' - O'*(E.,,»

and bence. by (5.3),

[0' - 0'* (E. ,,»O(E. ", 0') s O. (5.6)

This inequality yields the desired results.
The results in Theorem 6 sugest a possible definition for the stress nltuation time ., for a

generalized MaxweUian material. In particular, we define this time by

__( ) __ [0' - U·(E, .,,)]
., - ., E, ". 0' -. .

G(E.",O')
(5.7)

Then, the inequality (5.6) asserts that the relaxation time l' is non-negative. Notice tbat at
equilibrium (5.7) implies

O...(E*. ,,*. 0'*)

and thus, our assumption that the strict form of (4.16) holds (i.e. 5. h) is merely an assertion that
the equilibrium value of the relaxation time T* is non-negative and finite.

6. CHARACTERIZATION OF INSTANTANEOUS RESPONSE

Another important aspect of the behavior of generalized Maxwellian materials concerns
their response to small, but rapid, changes in strain and entropy. This response is elastic in



The thermodynamics of Maxwellian materials sss

nature and is termed the instantaneous response of the material. In particular, it is characterized
by a function (see Greenberg[JO))

which has the properties

U/(E, 71) =E(E, 71, U+(E, ,,»,
U.,,+(E, 71) =F(E, 71, U+(E, ,,».

(6.1)

(6.2)

(6.3)

It is for this reason that we call E and F the instantaneous stress-strain modulus and the
instantaneous stress-entropy modulus, respectively. In view of (6.1), (3.14) and (3.15) become

(6.4)

(6.5)

We call u+, r and i+ the instantaneous response functions for the material.
Using the chain-rule, (6.4) yields

i/=(e.t+(i.tU/,

e"+ =(e"t +(i.tu.,,+ ,

and consequently, by (6.2), (6.3), (3.18), (3.19), (6.1) and (6.5), we have:

Theorem 7
The instantaneous response of a generalized MaxwdUan material is described by the

response flUlction

for all admissible pairs (E, 71), and the instantaneolU strus u and temperature (J are determined
by the thermodynamic relations

(6.6)

7. A SPECIFIC CONSTITUTIVE MODEL

In the course of discussing the thermodynamics of seneralized Maxwellian materials, we
have established restrictions on the form of the constitutive equations. 'l'1iese restrictions are
quite useful in formulating specific constitutive models. Here we wish to illustrate the
formulation of such models by considering a simple example. To construct dais example we
must assume an explicit form for the dependence of the internal eneqy on the stress. We do
this with the required form (3.14) and the minimal property (4.14) in mind. Consequently, we
will assume that

(7.1)

where

(7.2)

By noting (4.24) and Theorem 4, the derivatives of the internal energy function are computed to
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be
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(7.3)

(7.4)

(7.5)

We also require a definition of the explicit dependence of tbe temperature relation (3.15) on
the stress and take

(7.6)

It is important to note that this relation must be the solution of (3.8) and. in view of (3.22) and
(3.10),

(7.7)

for aU admissible pairs (If. 'f). We now show that a relationship exists between it and K. This
relationsbipis derived by evaluating (7.1) at the instantaneous stress i+(£.l1) and invoking the
relation (6.6)z to obtain

i+ = i·+~(K,,)(a+ -i*)2+ i{(a+-a-*)(6',,+ - 6';).... (7.8)

If (7.6) is also evaluated for the instantaneous temperature. the result can be substituted into
(7.8) to yield

Notice that at a natural state; i.e. at a state where ii+ =i*::: O. (7.9) and (7.2) assert that

sgn M::: sl1'l (6',,+ - a-~).

(7.9)

(7.10)

An additional constraint on K can be derived by evaluating (7. t) for the instantaneous stress
and using (6.6),. This yields

(7.11)

Then. uaina (1.3)..(1.6), (7.9) and (1.11), we can compute the moduli Eand F from (3.18) and
(3.19) as

(7.12)

(7.13)

Finally, we complete this example by specifying the stress relaxation function Gconsistent
with Theorem 6:

- 1G == --(O'-i*),
l'

where 1'>0 is a constant (see Malvern{I2]).

(7.14)
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It is of interest to note that, in connection with the mechanical theory (1.1), Schuler and
Nunziato[131 have used the functional forms (7.12) and (7.14) for E and G to successfully
describe tbe dynamic response of polymethyl methacrylate below 0.75 GPa.

8. AN ALTERNATIVE FORMULATION FOR GENERALIZED MAXWELLIAN MATERIALS

In the tbeory of generalized Maxwellian materials we have shown that the stress acts very
much like an internal state variable. Here we wish to point out that the theory could have been
alternatively formulated so that the temperature acts as the internal state variable.

Returning to Section 3, we note that by (3.10) and (3.22) the function i is invertible in u for
every admissible pair (E, .,,). Consequently, there exists a function (f;

u =u(E, .", 8), (8.1)

which is equivalent to (2.5). This equivalence leads directly to tbe following analog of Theorem
2.

Theorem 8
A generalized Maxwellian material can be alternatively characterized by the constitutive

equations

e=e(E,.", 8)

u =(f(E, .", 8)

iJ = A(E, .", 8)i + B(E, .",8)':; + C(E, .", 8)

subject to the dissipation inequality

f,(E, .". 8)C(E• .", 8):S O.

(8.2)

(8.3)

(8.4)

(8.5)

Furthermore. the response functions A and Bare not arbitrary bllt are determ;n(d by i and (f

throllgh tlte relations
A(E,.". 8)e,(E,.". 8) =(f(E• .", 8)- e.(E• .", 8),

B(E•.", 8)e-(E• .", 8) =8 - i,,(E, .", 8).

(8.6)

(8.7)

It should be apparent that this formulation of the theory can now be developed along the
same lines as those fonowed in Sections 4-6. Of coune, the instantaneous and equilibrium
response functions in the present context will be the same as those already defined. However.
we shall not take up the details of this analysis bere.

In closing, we wish to merely emphasize the ease by which one can 10 from the formulation
in terms of stress in Theorem 2 to the formulation in terms of temperature in Theorem 8. In
particular, if the functions

e=iCE, .", u),

8 = iCE, .", u),

G =G(E• .",U)

(8.8)

(8.9)

(8.10)

are given, we can then invert (8.9) to get (8.3). Hence. it follows from (8.8) and (8.10) that

e = i(E,.", (f(E, .". 8» = i(E,.", 8),

G =G(E,.", U(E,.", 8» =G(E,.", 8).

Furthermore. the moduli A and B can be computed according to (8.6) and (8.7), and Ccan be
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deduced from (3.22);
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- _ G(., " 8)
C(.,.", 8) - - ( 8)'

(1', ., .",
(8.11)

We note that in this formulation the energy equation bas the form

lhj +Me, .", 8)C(.,.", 8) =r. (8.12)

9. CLOSING REMARKS

In tbis paper we have presented a complete thermomechanical formulation for Maxwellian
materials which do not conduct heat. As one might expect we have shown that the internal
energy function provides a complete thermodymamical description of the material only when
the response is elastic, i.e. at the equilibrium and instantaneous states. For other states
additional response functions must be specified. In the context of the stress-rate formulation, a
temperature response function and a stress-relaxation function must be specified; and, in
particular, the stress-relaxation function must be specified as an odd function of the overstress.

We have also shown that, in one dimension, two formulations of the response functions are
possible, and that these two choices are entirely equivalent formulations. The stress-rate
formulation is commonly used in practical problems; however, the temperature-rate formula­
tion is possibly more useful since it involves a scalar rate-relation for modeling bulk relaxation
phenomena.
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