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Abstract—In this paper, we study the thermodynamics of a class of nonlinear dissipative materials
frequently called Maxwellian materials. Using the Clausius-Dubem incquality, we establish the restrictions
on the constitutive equations and show that in non-equilibrium situations the stress behaves in a manner
similar to an internal state variable. We further show that the stress relaxation function for the material
must satisfy a dissipation inequality, and that, if all equilibrium states of the material are asymptotically
stable, the stress relaxation function is an odd function of the overstress o —&*, where &* is the
equilibrium stress. In addition, we consider the instantancous and equilibrium responses of the material and
prove that in these situations both the stress and the temperature are deriveable from the internal energy
function. Finally, we consider briefly an -example of a specific consititutive model and close with a
discussion of an alternative formulation of the general theory in which the roles of stress and temperature
are interchanged.

1. INTRODUCTION
The constitutive assumption

o = E(e, 0)é + G(e, 0) (1.1)

has been used extensively to study one-dimensional wave propagation in non-linear dissipative
materials such as viscoplastic and viscoelastic materials.t Materials characterized by (1.1) are
frequently called Maxwelliant where o is the stress, € is the strain, E is the instantaneous
stress-strain modulus and G is the stress relaxation function.

Although this material model has found wide use, we are unaware of any thermodynamical
formulation which encompasses (1.1). Our aim in this paper is to develop such a formulation for
nonconductors of heat within the mathematical framework of thermodynamics proposed by
Coleman and Noll[5]. Crucial to the successful development of our theory is the appropriate
selection of the set of material response functions. Relation (1.1) is merely a special case of the
more general system of constitutive equations that we wish to study.

Our choice of response functions has been strongly influenced by the result in classical
thermodynamics that there exists conjugate pairs of thermomechanical variables, i.e. stress and
strain or temperature and entropy. For example, suppose that we postulate a response function
for the internal energy. Then, in the classical theory, we see that such a function can only
depend on the strain and entropy. Furthermore, two conjugate pairs of variables must exist in
that stress is derivable from the internal energy by taking the partial derivative of the energy
with respect to the strain, and the temperature is obtained when the partial with respect to the
entropy is evaluated. In general, regardless of the thermodynamic potential used in the classical
theory, it is never a function of both variables in a conjugate pair but rather only one from each
of the pairs. Thus the stress and strain connot appear together in the list of independent
variables appearing in such a thermodynamic potential function.

There is a great volume of sound physical observation causing us to adhere to these
concepts and we do not wish to violate tradition; however, such reasoning applies only to the
realm of equilibrium states covered by the classical theory. Under dynamical situations we feel
free to set aside these precepts and permit both members of each conjugate pair to appear in
the internal energy function. This point of view certainly appears to be consistent with the
functional dependence stated in (1.1) where both stress and strain appear as independent
variables.

tFor example, see the text by Cristescu[1] and the review articles by Herrmann[2) and Nunziato ef al.{3).
tConstitutive equations of the type (1.1) were first introduced by Maxwell{4] in a discussion of the kinetic theory of

gases.
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Thus, in this paper, we will consider constitutive equations in which the internal energy, the
stress rate, and the temperature rate are functions of strain, entropy, stress, and temperature as
well as the strain rate and entropy rate. Furthermore, in keeping with (1.1), we require that the
stress-rate and temperature-rate relations be linear in the strain rate and the entropy rate. While
strain, entropy, stress, and temperature all appear as independent variables in the internal
energy, the role of the stress and temperature is distinct from that of the strain and entropy. In
a sense, the strain and entropy serve to characterize the equilibrium states of the material, as
would be expected from the classical theory; while the stress and temperature act as internal or
hidden variables, governed by evolutionary equations, which describe departures from equili-
brium. This interpretation of stress and temperature as internal state variables permits us to
develop the present theory along the lines proposed previously by Coleman and Gurtin[6] and
Bowen(7] in studies of materials with internal state variables.

In Section 2, we record our constitutive assumption for nonconductors and the governing
field equations. In Section 3, we examine the restrictions imposed on the constitutive equations
by the Clausius-Duhem inequality. These results show that three independent response
functions must be prescribed which give the internal energy, the temperature, and the stress
relaxation of the material solely as functions of strain, entropy, and stress. The stress-rate
relation is shown to be similar in form to (1.1) where the moduli are determined by the
prescribed internal energy and temperature response functions, and the stress relaxation
function is restricted by a dissipation inequality. The existence of a response function for the
temperature eliminates the need for the temperature-rate relation.

The concept of equilibrium and the stability of equilibrium states is treated in Section 4.
Here we show that the variables strain and entropy are sufficient to characterize the equilibrium
states in a manner consistent with classical thermodynamics; and that at equilibrium, stress and
temperature are derivable from the internal energy. Furthermore, we find that the internal
energy is a minimum at all equilibrium states which are asymptotically stable. In Section 5 we
make use of our equilibrium results to establish further restrictions on the stress relaxation
function. In particular, if all equilibrium states are asymptotically stable, then the stress
relaxation function must be an odd function of the overstress o — &*, where G* is the
equilibrium value of the stress.

The instantaneous response of the material is covered in Section 6, and assuming that this
response is elastic, we find that the stress and temperature are again deriveable from the
internal energy function. In Section 7, we illustrate how the resuits of the theory can be used to
construct a specific consitutive model.

Finally, in Section 8 we discuss an alternative formulation of the theory in which the roles
of stress and temperature are interchanged so that the temperature is now governed by a rate
relation. In this case the internal energy, the stress, and the temperature relaxation of the
material are functions only of strain, entropy, and temperature. This formulation is shown to be
entirely equivalent to the original formulation. '

2. EQUATIONS ij' MOTION AND MATERIAL RESPONSE
In this paper, we are interested in one-dimensional motions of a class of nonlinear,
dissipative materials. Thus, it is convenient to identify the body in its refereace configuration
with an interval ® of the real line R = (—x, ») and identify each material point with its position
X in &. In its reference configuration, the body is assumed to be homogeneous and have a
density denoted by po. The motion of the body @ is described by the continuous function x
such that

x=x(X,1) 2.1)

gives the spatial position x at time ¢t € R of the particle which occupied the position X in the
reference configuration. The displacement u of the material point X is defined by

u=yX,t-X (2.2)

Assuming that the motion y is of class C?, we can also define the strain (or displacement
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gradient) € by

€= uy. 2.3)

Hereafter, we shall call the pair (¢, n) an admissible strain-entropy pair if both the strain € and
the entropy 7 are of class C? for all (X, t) in & x R.

We now wish to consider constitutive equations which will characterize the ther-
momechanical response of dissipative materials of the type (1.1). In formulating these constitu-
tive equations, we have kept in mind our introductory remarks on conjugate variables and
included both mechanical and thermal relaxation effects. Consequently, we consider materials
which do not conduct heat and are described by the constitutive equationst

e=é(e,n,0,0,én), (2.4)
¢ = E(e, n, 0, 0)é + Fle, n, 0, 0)5 + G(e, m, 0, 0), 2.5
6 = A(e, 1, 0, 0)é + B(e, n, 3, )0 + C(€, 0, 0, 0), (2.6

where ¢ is the internal energy per unit volume. The functions E, F, A, and B are called the
instantaneous stress-strain modulus, the instantaneous stress-entropy modulus, the instan-
taneous temperature-strain modulus, and the instantaneous temperature-entropy modulus,
respectively. Throughout this paper, we assume that for all (¢, 5, 0, )

Ex0, F#0, A»0, B#0. Q@

The functions G and € appearing in (2.5) and (2.6) are called the stress relaxation function and
the temperature relaxation function, respectively.

In order for this constitutive assumption to be physically meaningful, we need to ensure that
the evolutionary equations (2.5) and (2.6) for the stress o and temperature # always have a
solution. Therefore, we shall further require that for every admissible pair (¢, n) on # X ® and
initial values o(X, 0) = oo, 0(X, 0) = 6, the differential equations (2.5) and (2.6) have class C'
solutions on & xR. Materials of the type (2.4)(2.6) will be referred to as generalized
Maxwellian materials.

In the present context, a thermodynamic process is the ordered array {i, 3, o, 6, ¢} such that
éis of class C% B, F, A, and B are of class C'; and the balance laws

poil = ox + b, 2.8)
é=oé+r, 2.9

along with (2.5) and (2.6), are satisfied on & X R for appropriate values of the body force b and
heat supply r. For a given process to be admissible it must also satisfy the Clausius-Dubem
inequality

Mzr (2.10)

3. CONSEQUENCES OF THE CLAUSIUS-DUHEM INEQUALITY
Here we require that every thermodynamic process in a generalized Maxwellian material be
an admissible process and consequently, the dissipation inequality (2.10) serves to impose

restrictions on the form of the constitutive equations (2.4)-(2.6). These restrictions are contained
in:

Theorem 1
Every thermodynamic process in a generalized Maxwellian material satisfies the Clausius-

1These constitutive equations are consistent with the concept of equipresence; see Truesdell and Toupin(8).
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Duhem inequality (2.10) if and only if
(i) é is independent of é and 7; i.e.
e=é€n,0,0), 3.D

(i) é E, F, A, and B are related by

(6)+(é)E +(é)A-a =0, 3.2)
() +(E)F +(é)B-0=0, 3.3

(iii) &, G, and C obey the inequality
(6,)G + (&)C 0. (3.4)
Proof
The proof of this result follows a now standard argument (see Coleman and Noll[5]). By the

smoothness of the internal energy response function é, (2.4), (2.5), (2.6), and the energy
equation (2.9) imply that

{()+ ()E + (8)A - a}é +{(&,) + (&) F + (&) B + (é,)G + (8)C
+(@)E+ (&) =r. (3.5)
This form of the energy equation combines with (2.10) to yield the inequality
{(€) + (&)E + (é)A - aYé +{(&,) + (&,)F +(é)B - 8} + (6,)G + (&)C
+(E)E+ (6,3 =0. (3.6)

Clearly, for any point in 8 xR there exists an infinite set of thermodynamic processes
corresponding to an admissible pair (e, 7). For such processes the values of ¢, 7, € and % can
vary independently of any of the other quantities in the inequality (3.6). Consequently, the
coefficients, of ¢ %, é and 7 must vanish and (i)~(iii) of Theorem 1 follow directly. The
sufficiency of (i)~(iii) is obvious from (3.6).

It should be noted that with the results of Theorem 1, (3.5) reduces to a more convenient
form of the energy equation, i.e.

00 +(E,)G+(é)C=r. 3.7

The resuits (3.1)-(3.3) have an important implication. In particular, they assert that there
exists a class C' function f such thatt

flen0,0)=()+(@E)E+(é)A-0o
=()+(&)F+(G)B-6=0. (.8)

Thus, by the chain-rule,
(e + i+ (F)e +(fd =0. 3.9)
Either (2.5) or (2.6) can be substituted into (3.9)-and the complimentary relation (for either 6 or

tWe require that the solutions of (3.2) and (3.3) lie on the same hypersurface. If this were not true, (3.2) and (3.3) could
be solved for o and 8 in terms of ¢ and . Hence, the theory would degenerate to a dependence of the response functions
on € and 7 alone. The material response would be elastic in this case.
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) can be obtained provided f has the following properties:

(=0, ()0, (3.10)
F)+EDE+ (DA =0, G.11)
() +FDE+ (B =0, 6.12)

(FG+(FC=0. (.13)

With (f,) # 0 everywhere, (3.8) implies that there exists a function 4 such that
0=0(e,n,0)

and this relation is equivalent to the differential form (2.6)t. In view of this equivalence, we can
reformulate the constitutive equations (2.4)-(2.6) and, in particular, we can prove:

Theorem 2
A generlized Maxwellian material can be characterized by the constitutive equations
e=éen,0), (3.14)
8= 6(e,n,0), (3.15)
o = E(e, 0, 0)é + Fle, 1, 0)i + Gle, 1, 0), (3.16)
subject to the dissipation inequality
&,(e, 1, 0)G(e, 1, 0) 0. (3.17)

Furthermore, the response functions E and F are not arbitrary, but are determined by & and 6
through the relations

Ee n0)é (e n0)=0~élen0), (3.18)

Fle, n, 0)é,(e, , 0) = b(e, 1, 0) - &,(€, 1, 0). (3.19)

Proof
To prove these results, we first note that since (3.15) exists, (3.1) becomes

e é(" " 0, )= é(‘! 0, 6(‘9 » o)
=éen,0) (3.20)

which is (3.14). Similarly, we can obtain the functions E, F, and G in (3.16). To obtain (3.17), we
note that by (3.20),

&, =6+, (3.21)

But, by (3.8) and (3.13),
b, = U € 22
"6 62

?&u{.k&mmwhmwm&nhwﬁdaﬂkwhyhtmﬁm
o = &(e, n, ). This formalation is discussed further in Section 8. It should also be noted that since both /, and /, are
non-vanishing, (3.13) asserts that if & or ¢ vanish, then they vanish simultaneously.
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Therefore, we see that, with G = G,
(&:)G = (é,)G +(e)C (3.23)

and hence, (3.17) follows directly from (3.4). Finally, to establish (3.18) and (3.19), we need to
compute the partial derivatives ¢, and é,. By (3.20),

é = é,+(8)0, &,=2¢,+(&)8, (3.29)

where, by (3.8), (3.11)-(3.13), and (3.22),

6. = —% =B (%) +A, (3.25)
é, = -S(%% =F (g—) +B. (3.26)

Substituting (3.25) and (3.26) in (3.24) and using the resulting expressions with (3.2), (3.3), and
(3.23), we can arrive at the desired results.

It is important to emphasize that in formulating thermodynamically consistent constitutive
equations for generalized Maxwellian materials, three response functions, &, 6 and G, must be
specified. This is more than is usually required in other dissipative theories, such as materials
with memory where only one function need be specified, the internal energy (se¢ Coleman(9)),
and materials with internal state variables where two response functions are required, the
internal energy and the vector rate equation for the internal variables[6, 7}. Again we remark that
the present theory bears a striking similarity with the theory of materials with internal state
variables with the stress o acting as the internal variable. Consequently, much of our
subsequent development of the theory of generalized Maxwellian materials will draw heavily on
the ideas developed previously in studies of materials with internal variables (see Coleman and
Gurtin[6], and Bowen(7)).

Finally, we observe that, by (3.23), the energy equation (3.7) becomes

b(e, 7, )9 + &,(e, 0, 0)Gle, 0, o) = 1. (3.27)

4. EQUILIBRIUM STATES AND ASYMPTOTIC STABILITY
In dissipative materials, the notion of an equilibrium state is an extremely important one and
here we discuss the properties of such states in the context of the theory of generalized
Maxwellian materials.
In view of (3.16), we shall call a state (€*, n*, o*) an equilibrium state (see Greenberg([10]) if
G(e*, n*, 0% =0. @.1)
Clearly then, the dissipation inequality (3.17) asserts that at a material point X in 8
8(t) = 8(e, 1, 0) = &,(€, 1, 0)G(e 1, o) “4.2)
is a maximum at equilibrium. Consequently,
Sc(e*, n*, a*) =5, (e*, 1%, 0*) = §,(e*, 9*. 0% =0 4.3)

and

Sule*, 1%, 0% S0, §(e* 1% 0% S0, (e n* o*) =0, 44
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Using these conditions, it is a simple matter to show that
(&)*G)* =0,
(&G, =0, @.5)
(EMGo)* =0,

and
2 MG)* + ()G <0, (4.6)
2Emm)*(G,)* +(8,)*(Gpy)* <0, @n
280 )*(G.)* +(2,)*(Go)* <0, 4.8)

where we have used the notation ( )* to indicate that the function is evaluated at equilibrium.
The results (4.5)(4.8) clearly give an indication of the restrictions the dissipation inequality
imposes on the response functions ¢ and G in the neighborhood of an equilibrium state.
However, even stronger results hold if the equilibrium state is stable in a certain sense.

Consider again an equilibrium state (¢*, n*, 0*) of the material at the point X € 3. The
domain of attraction for the constant strain-entropy pair (€*, n*) of an equilibrium state is the
set @* of all values o, such that the solution o = o(f) of the initial value problem

¢ =Gle*, 7%, 0), 4.9
oty) = oo, 4.10)
exists for all time ¢ = f,, is unique, and
o(t)=>o* as t-w, 4.11)
The equilibrium state (¢*, n*, o*) is said to be asymptoticaily stable for the constant strain-
entropy pair (¢*, n*) if the set @* contains a neighborhood of o*.
Now, it follows from (3.14), (3.16), and the chaiti-rule that at X there exists at least one

thermodynamically admissible process corresponding to a constant strain-entropy pair (e*, n*)
such that

é=¢E,(e*, n*, o)G(e*, n*, o).
Furthermore, by the dissipation inequality (3.17), e(f) =< e(to) for all ¢ = #, or, by (3.14) and
(410 é(e*, n*, o0) = &(e*, n*, a(1)). 4.12)
Since o, is in @*, (4.11) and the smootheness of & implies that
lim &(e*, n*, o(t)) = &e*, n*, 0%),
and consequently,
é(e*, n*, op) Z é(e*, n*, o*). 4.13)

This result, along with the definition of asymptotic stability, yields the following minimal
property of the internal energy.t

1This minimal property also arises in other dissipative theories. See Coleman[9] whe considered materials with Iading
memory and Coleman and Gurtin{6] who consiier materiais with internal state varisbles.
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Theorem 3
At an equilibrium state which is asymptotically stable for the constant strain-entropy pair
(€*, n™*), the internal energy is a minimum; i.e.
ée*, n*, o)z é(e*, n*. o™ 4.14)

for all values of the stress o in some neighborhood of o*.*Furthermore, at such an equiilibrium
state

&{e*, n*, o*) =0, Znle*, . 0% 20, 4.15)
and
G.(e*, n*, 0% 0. (4.16)
Clearly (4.15) is a consequence of (4.14) and (4.16) follows from (4.15) and (4.8).
From classical arguments, we expect that at equilibrium states a unique relationship exists
which determines the stress o* in terms of the admissible pairs (¢*, n*):

o* = @ e, ). 4.17

We can guarantee the existence of such a functional form by requiring the strict form of the
inequality (4.16), i.e.

G,(e*, n*. o*) <0, (4.18)

to hold for all equilibrium states. Clearly, by (3.14) and (3.15), we also have
e* = é(e*, n*, G*(e*, n*)) = E%(e*, 1), (4.19)
8% = B(e*, n*, *(e*, ™)) = §*(e*, n). (4.20)

We call 7*, &* and 0* the equilibrium response functions for the material. Then, by the chain
rule,

&= (E)* + (&%, 4.21
& =(&,)* + (&), “4.22)
and using (3.18), (3.19) and (4.15), we have:
Theorem 4
If the equilibrium states of a generalized Maxwellian material are asymptotically stable and

(4.18) holds, then the equilibrium response of the material is elastic and characterized by the
response function

e=é*en) 4.23)
where the stress o and the temperature @ are given by the thermodynamic relations
G*=¢8, f*=23 4.24)

. We conclude this section by establishing one other result of interest which has a bearing on
the speed of propagation of weak disturbances in generalized Maxwellian materials.

Theorem 5
Consider a generalized Maxwellian material whose equilibrium states are asymptoticaily
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stable. Further suppose that for every equilibrium state (e*, n*, o*),
Go(€*, n*, 0%) <0, (4.25)
G.(e*, n*, 0*)>0. (4.26)

Then, the instantaneous stress—strain modulus E evaluated at the equilibrium state (€*, n*, o*)
is always greater than or equal to the equilibrium stress-strain modulus ¢*, i.e.t

E(e*. n*, 6%(e*, n*) = G%(e*, 1%) > 0. 4.27)
Proof
Differentiating (3.18) with respect to stress and with respect to strain yield the relations
1=t = e + 2B, “28)
~éy = bnE + &,E,. 4.29)

Differentiating (4.21) and (4.24) with respect to strain implies

Gt = 6% = (Boe)* + 2Epe)* % + (E,)* % + (60)* (6% (4.30)
Evaluating (4.28) and (4.29) at equilibrium and using (4.30) and (4.15), we arrive at
E* - 6% = (&,0)%(E* - &%)

and the upper bound of (4.27) follows from (4.15). The lower bound is a consequence of (4.25),
(4.26), and the relation

PN (<
G

which follows from (4.1) and (4.17).
Notice that (4.27), along with our assumption that £ never vanishes, is sufficient to
guarantee that the instantaneous stress-strain modulus E is strictly positive for all (e, 5, o):

E(e,n,0)>0. 4.31)

S. FURTHER RESTRICTIONS ON THE STRESS RELAXATION FUNCTION
Having introduced the concept of equilibrium, we can now examine further the
consequences of the dissipation inequality (3.17). In particular, (3.17) imposes certain restric-
tions on the stress relaxation function G and, following Malvern’s suggestion[12] that G be
represented as a function of the overstress o — G*(¢, n), we shall establish:$

Theorem 6

Consider a generalized Maxwellian material whose instantaneous stress—-strain modulus
E(e, n, o) is strictly positive. Further suppose that all equilibrium states of the material are-
asymptotically stable and that at these equilibrium states (e*, n*, o*)

El€*, 0%, 0% >0,
G.(e*, 1%, %) <0. 5.1

tWe note that Greenberg [10) requived the strict form of the inequality (4.27) to bold in order to prove the existence of steady
waves in the context of the mechanical theory (1.1). Here we sec that such an assumption has its foundatiions in
thermodynamics. Coleman(11] bas derived a similar result for materials with fading memory.

$Since G is-a function of o, € 0, andtbeeqnﬂibnmfunctm&‘utfmcmodydcadq.wmﬂmnexpms
the stress dependence of G in terms of the overstress o — *. This representation is used quite frequently in applications.
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Then, for every admissible strain-entropy pair (€, 1), the stress relaxation function G(e, , o)
must be an odd function of the overstress o — G*(¢&, 1) and satisfy

sgn G(e, n, o) = — sgn [o — ¢*(e. 1)). (5.2

Proof
Using (3.18) and E > 0, the dissipation inequality (3.17) asserts that

[0~ é&(e 1, 0)]G(e, n,0)<0 (5.3)
Now let us construct the two C' functions
da(e,no)=0-8(en,0), (5.4
Ble,n, o) =0~ 5*(e, 7). (5.5)
It is clear from Theorem 4, that both a and 8 vanish at equilibrium and, in fact, as functions of
o, the functions & and B8 must always vanish simuitaneously. Furthermore, for the constant
strain-entropy pair (e*, n*), (5.4) and (5.5) imply that at equiilibrium
dr(e*, 0%, 0% =1 - Eu(e*, 0%, o),
Bole* 0% a") = 1.
But, by hypothesis, (4.28) and (5.1),
1= (E)* = ()" (E)*>0.
Thus, as functions of &, both & and 8 have slopes of the same sign at equilibrium. This fact,

along with the observation that & and 8 must always vanish simultaneously at equilibrium,
implies that for every admissible strain-entropy pair (¢, n)

sgn (o — &,(¢€, n, o)) = sgn [0 — 7*(e. )]
and hence, by (5.3),
[0 - 6*(e, 0)]Gle, n, @) <0 (5.6)
This inequality vields the desired results.

The results in Theorem 6 suggest a possible definition for the stress relaxation time r for a
generalized Maxwellian material. In particular, we define this time by

r= e n.0) = ZI& ] 5.7)
Gle.n o)

Then, the inequality (5.6) asserts that the relaxation time r is non-negative. Notice that at
equilibrium (5.7) implies

P P —
Gole*, 1%, o%)

and thus, our assumption that the strict form of (4.16) holds (i.e. 5.1,) is merely an assertion that
the equilibrium value of the relaxation time =* is non-negative and finite.

6. CHARACTERIZATION OF INSTANTANEOUS RESPONSE

Another important aspect of the behavior of generalized Maxwellian materials concerns
their response to small, but rapid, changes in strain and entropy. This response is elastic in
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nature and is termed the instantaneous response of the material. In particular, it is characterized
by a function (see Greenberg[10])

o=d"(61n) 6.1

which has the properties
6."(e,n) = E(e, n,6*(e, m)), 6.2)
G,"(e,n) = Fle, n, 6" (e, 7). (6.3)

It is for this reason that we call E and F the instantaneous stress-strain modulus and the
instantaneous stress-entropy modulus, respectively. In view of (6.1), (3.14) and (3.15) become

e=é(e,n,6%(en)=¢E(n), 6.4)
0= b(e, n, 6 (€, ) = G*(e, m). (6.5)

We call 6%, &* and 6" the instantaneous response functions for the material.
Using the chain-rule, (6.4) yields

e, = (&) +(&)'6.",
&' = (&) +(&)'d,",
and consequently, by (6.2), (6.3), (3.18), (3.19), (6.1) and (6.5), we have:

Theorem 7

The instantaneous response of a generalized Maxwellian material is described by the
response function

e=¢&'(e,n)

for all admissible pairs (e, n), and the instantaneous stress o and temperature 8 are determined
by the thermodynamic relations

Gt=¢', 0" =¢. (6.6)

7. A SPECIFIC CONSTITUTIVE MODEL

In the course of discussing the thermodynamics of generalized Maxwellian materials, we
have established restrictions on the form of the constitutive equations. These restrictions are
quite useful in formulating specific constitutive models. Here we wish to illustrate the
formulation of such models by considering a simple example. To construct this example we
must assume an explicit form for the dependence of the internal energy on the stress. We do
this with the required form (3.14) and the minimal property (4.14) in mind. Consequently, we
will assume that

e= e, 1,0)= (e, m) +3 K6, o — 6*(e P .1

where
K(e,n)>0. (7.2)

By noting (4.24) and Theorem 4, the derivatives of the internal energy function are computed to
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be
b= 6%+ 1 (R)o - - R(o - 674, (1.3)
g, = é”u%(fz,,)(awé*;*-K(a~&*)a-:~,, (7.4)
&, = K(o—&*). (1.5

We also require a definition of the explicit dependence of the temperature relation (3.15) on
the stress and take

8 = f(e, 9, 0) = 8%(e. n)+ M€, n)o ~ 5*(e, ). (1.6)

1t is important to note that this relation must be the solution of (3.8) and, in view of (3.22) and
(3.10),

M(e, ) #0 an

for all admissible pairs (€, 7). We now show that a relationship exists between M and K. This
relationship is derived by evaluating (7.1) at the instantaneous stress ¢ (e, 7) and invoking the
relation (6.6), to obtain

§* = g+ + L (R )6" - 6*7+ R(G* - 6*X@," - &%), (78)

If (7.6} is also evaluated for the instantaneous temperature, the result can be substituted into
(7.8) to yieid

M =z (K 6" - ")+ K(&," - 6%). (1.9)

o] e

Notice that at a natural state; i.e. at a state where 6* = #* =0, (7.9) and (7.2) assert that
sgn M = sgn (6" — 6%). (7.10)

An additional constraint on K can be derived by evaluating (7.1) for the instantaneous stress
and using (6.6),. This yields

RXG -9+ K(a - 39-1=0. .1y

Then, using (7.3)(7.6), (7.9) and (7.11), we can compute the moduli £ and F from (3.18) and
(3.19) as

E= é;’+%(ln K6 - o), 7.12)
I”?=6r,,*+%(!n R (6" - o). (.13)

Finally, we complete this example by specifying the stress relaxation function G consistent
with Theorem 6:

G= —;‘;(w "), (7.14)

where 7> is a constant (see Malvern{12)]).
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It is of interest to note that, in connection with the mechanical theory (1.1), Schuler and
Nunziato[13] have used the functional forms (7.12) and (7.14) for E and G to successfully
describe the dynamic response of polymethy! methacrylate below 0.75 GPa.

8. AN ALTERNATIVE FORMULATION FOR GENERALIZED MAXWELLIAN MATERIALS

In the theory of generalized Maxwellian materials we have shown that the stress acts very
much like an internal state variable. Here we wish to point out that the theory could have been
alternatively formulated so that the temperature acts as the internal state variable.

Returning to Section 3, we note that by (3.10) and (3.22) the function @ is invertible in o for
every admissible pair (¢, n). Consequently, there exists a function &;

o =6 0), @.1

which is equivalent to (2.5). This equivalence leads directly to the following analog of Theorem
2.

Theorem 8

A generalized Maxwellian material can be altematively characterized by the constitutive
equations

e= &, 6) 82)
o=dlen8 8.3)
6= Ale, n, 6)é+ Ble, 1, 0)17+ Cle, 0. 0) 8.4

subject to the dissipation inequality
&(e. 1, 0)C(e, n, 0) 0. 8.5)

Furthermore, the response functions A and B are not arbitrary but are determined by é and
through the relations

A€, 1, 0)éy(e, 1, 0) = G(€, 1, 0) — &.(e, 7, 0), (8.6)
B(e, m, 0)éy(e. 1, 0) =0 - E (¢, 5, 6). 8.7

It shouid be apparent that this formulation of the theory can now be developed along the
same lines as those followed in Sections 4-6. Of course, the instantaneous and equilibrium
response functions in the present context will be the same as those aiready defined. However,
we shall not take up the details of this analysis here.

In closing, we wish to merely emphasize the ease by which one can go from the formulation
in terms of stress in Theorem 2 to the formulation in terms of temperature in Theorem 8. In
particular, if the functions

e=é(e,n,0), 8.8)
8= 6(e, . 0), (8.9)
G=Gle,n,0) (8.10)

are given, we can then invert (8.9) to get (8.3). Hence, it follows from (8.8) and (8.10) that

e = é(¢, 1, G(e, n, 0)) = é(€, 0, 0),
G = G(e, 0, 6e, 0, 8)) = G(e, 7, 0).

Furthermore, the moduli A and B can be computed according to (8.6) and (8.7), and C can be
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deduced from (3.22);

Glen.0)

C(s' i 9) = 50(69 m o)

8.11)

We note that in this formulation the energy equation has the form

00 + &€, 1, 0)Cle,n, O)=r. 8.12)

9. CLOSING REMARKS

In this paper we have presented a complete thermomechanical formulation for Maxwellian
materials which do not conduct heat. As one might expect we have shown that the internal
energy function provides a compiete thermodymamical description of the material only when
the response is elastic, i.e. at the equilibrium and instantaneous states. For other states
additional response functions must be specified. In the context of the stress-rate formulation, a
temperature response function and a stress-relaxation function must be specified; and, in
particular, the stress-relaxation function must be specified as an odd function of the overstress.

We have also shown that, in one dimension, two formulations of the response functions are
possible, and that these two choices are entirely equivalent formulations. The stress-rate
formulation is commonly used in practical problems; however, the temperature-rate formula-
tion is possibly more useful since it involves a scalar rate-relation for modeling bulk reiaxation
phenomena.

Acknowledgements—We would like to express our gratitude to R. M. Bowen and C. Truesdell for their helpful comments
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Note added in proof. Following the complation of this work, we had the opportunity to share our results with M. E.
Gurtin of Carnegie-Mellon University. At that time, he indicated that he had discussed similar ideas with Ioa Suliciu of the
Institute of Mathematics, Bucharest, Romanis in 1972 and the resuit was an unpublistied manuscript containing results
similar to our Theorems 1 and 4. Suliciu subsequently inciuded their results in a book{14] co-authored with N. Cristescu.
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